kqcircuits.simulations.export.elmer.elmer_solution
- class kqcircuits.simulations.export.elmer.elmer_solution.ElmerSolution(*, name: str = '', percent_error: float = 0.005, max_error_scale: float = 2.0, max_outlier_fraction: float = 0.001, maximum_passes: int = 1, minimum_passes: int = 1, is_axisymmetric: bool = False, mesh_levels: int = 1, mesh_size: dict = <factory>, mesh_optimizer: dict | None = None, vtu_output: bool = True, save_elmer_data: bool = False)[source]
Bases:
Solution
A Base class for Elmer Solution parameters
- Parameters:
percent_error – Stopping criterion in adaptive meshing.
max_error_scale – Maximum element error, relative to percent_error, allowed in individual elements.
max_outlier_fraction – Maximum fraction of outliers from the total number of elements
maximum_passes – Maximum number of adaptive meshing iterations.
minimum_passes – Minimum number of adaptive meshing iterations.
is_axisymmetric – Simulate with Axi Symmetric coordinates along \(y\Big|_{x=0}\) (Default: False)
mesh_levels – If set larger than 1 Elmer will make the mesh finer by dividing each element into 2^(dim) elements mesh_levels times. Default 1.
mesh_size – Dictionary to determine the mesh refinement. The keys (string) denote the entities where to apply the refinement and values (double) denote the maximal length of the mesh elements. Optionally, the values can be set as a lists of doubles. Then, value[0] is the maximal mesh element length inside at the entity and its expansion, value[1] is expansion distance in which the maximal mesh element length is constant (default=value[0]), and value[2] is the slope of the increase in the maximal mesh element length outside the entity. The key can be a single layer name, or it can consist of multiple layer names separated with the & symbol, meaning the entity will be an intersection of listed layers. Optionally, one can use a pattern for layer names with the * symbol representing any string in a layer name. The ! symbol before the layer name or pattern means that the complement of layer(s) is used instead. The key ‘global_max’ is reserved for setting global maximal element length. For example, if the dictionary is {‘substrate*’: 10, ‘substrate*&vacuum’: [2, 5], ‘global_max’: 100}, then the maximal mesh element length is 10 inside the substrates and 2 on region which is less than 5 units away from any substrate-vacuum interface. Outside these regions, the mesh element size can increase up to 100.
mesh_optimizer – Dictionary to determine mesh optimization, or None (default) to ignore optimization. The dictionary can contain keywords ‘method’, ‘force’, ‘niter’ and ‘dimTags’. See Gmsh manual (gmsh.model.mesh.optimize) for details. The default value for ‘method’ is ‘Netgen’.
vtu_output – Output vtu files to view fields in Paraview. Turning this off will make the simulations slightly faster
save_elmer_data – Save the full Elmer model after simulation. This can be used to restart the simulation or extract result field values as a post-processing step.
- tool: ClassVar[str] = ''
- percent_error: float = 0.005
- max_error_scale: float = 2.0
- max_outlier_fraction: float = 0.001
- maximum_passes: int = 1
- minimum_passes: int = 1
- is_axisymmetric: bool = False
- mesh_levels: int = 1
- mesh_size: dict
- mesh_optimizer: dict | None = None
- vtu_output: bool = True
- save_elmer_data: bool = False
- class kqcircuits.simulations.export.elmer.elmer_solution.ElmerVectorHelmholtzSolution(*, name: str = '', percent_error: float = 0.005, max_error_scale: float = 2.0, max_outlier_fraction: float = 0.001, maximum_passes: int = 1, minimum_passes: int = 1, is_axisymmetric: bool = False, mesh_levels: int = 1, mesh_size: dict = <factory>, mesh_optimizer: dict | None = None, vtu_output: bool = True, save_elmer_data: bool = False, frequency: float | list[float] = 5, frequency_batch: int = 3, sweep_type: str = 'explicit', max_delta_s: float = 0.01, london_penetration_depth: float = 0, quadratic_approximation: bool = False, second_kind_basis: bool = False, use_av: bool = False, conductivity: float = 0, nested_iteration: bool = False, convergence_tolerance: float = 1e-10, max_iterations: int = 2000)[source]
Bases:
ElmerSolution
Class for Elmer wave-equation solution parameters
- Parameters:
frequency – Units are in GHz. Give a list of frequencies if using interpolating sweep.
frequency_batch – Number of frequencies calculated between each round of fitting in interpolating sweep
sweep_type – Type of frequency sweep. Options “explicit” and “interpolating”.
max_delta_s – Convergence tolerance in interpolating sweep
london_penetration_depth – Allows supercurrent to flow on the metal boundaries within a layer of thickness london_penetration_depth
quadratic_approximation – Use edge finite elements of second degree
second_kind_basis – Use Nedelec finite elements of second kind
use_av – Use a formulation of VectorHelmHoltz equation based on potentials A-V instead of electric field E. For details see https://www.nic.funet.fi/pub/sci/physics/elmer/doc/ElmerModelsManual.pdf WARNING: This option is experimental and might lead to poor convergence.
conductivity – Adds a specified film conductivity on metal boundaries. Applies only when use_av=True
nested_iteration – Enables alternative nested iterative solver to be used. Applies only when use_av=True
convergence_tolerance – Convergence tolerance of the iterative solver. Applies only when use_av=True
max_iterations – Maximum number of iterations for the iterative solver. Applies only when use_av=True and only to the main solver (not to calc fields or port solver)
- tool: ClassVar[str] = 'wave_equation'
- frequency: float | list[float] = 5
- frequency_batch: int = 3
- sweep_type: str = 'explicit'
- max_delta_s: float = 0.01
- london_penetration_depth: float = 0
- quadratic_approximation: bool = False
- second_kind_basis: bool = False
- use_av: bool = False
- conductivity: float = 0
- nested_iteration: bool = False
- convergence_tolerance: float = 1e-10
- max_iterations: int = 2000
- class kqcircuits.simulations.export.elmer.elmer_solution.ElmerCapacitanceSolution(*, name: str = '', percent_error: float = 0.005, max_error_scale: float = 2.0, max_outlier_fraction: float = 0.001, maximum_passes: int = 1, minimum_passes: int = 1, is_axisymmetric: bool = False, mesh_levels: int = 1, mesh_size: dict = <factory>, mesh_optimizer: dict | None = None, vtu_output: bool = True, save_elmer_data: bool = False, p_element_order: int = 3, linear_system_method: str = 'mg', integrate_energies: bool = False, convergence_tolerance: float = 1e-09, max_iterations: int = 500, linear_system_preconditioning: str = 'ILU0', electric_infinity_bc: bool = False)[source]
Bases:
ElmerSolution
Class for Elmer capacitance solution parameters
- Parameters:
p_element_order – polynomial order of p-elements
linear_system_method – Options: 1. Iterative methods “mg” (multigrid), “bicgstab” or any other iterative solver mentioned in ElmerSolver manual section 4.3.1. 2. Direct methods “umfpack”, “mumps”, “pardiso” or “superlu”. Note that the use of other methods than “umfpack” requires Elmer to be explicitly compiled with the corresponding solver software. If a direct method is used the parameters “convergence_tolerance”, “max_iterations” and “linear_system_preconditioning” are redundant
integrate_energies – Calculate energy integrals over each object. Used in EPR simulations
convergence_tolerance – Convergence tolerance of the iterative solver.
max_iterations – Maximum number of iterations for the iterative solver.
linear_system_preconditioning – Choice of preconditioner before using an iterative linear system solver
electric_infinity_bc – effectively extend the model domain to infinity using spherical boundary conditions
- tool: ClassVar[str] = 'capacitance'
- p_element_order: int = 3
- linear_system_method: str = 'mg'
- integrate_energies: bool = False
- convergence_tolerance: float = 1e-09
- max_iterations: int = 500
- linear_system_preconditioning: str = 'ILU0'
- electric_infinity_bc: bool = False
- class kqcircuits.simulations.export.elmer.elmer_solution.ElmerCrossSectionSolution(*, name: str = '', percent_error: float = 0.005, max_error_scale: float = 2.0, max_outlier_fraction: float = 0.001, maximum_passes: int = 1, minimum_passes: int = 1, is_axisymmetric: bool = False, mesh_levels: int = 1, mesh_size: dict = <factory>, mesh_optimizer: dict | None = None, vtu_output: bool = True, save_elmer_data: bool = False, p_element_order: int = 3, linear_system_method: str = 'mg', integrate_energies: bool = False, boundary_conditions: dict = <factory>, convergence_tolerance: float = 1e-09, max_iterations: int = 500, run_inductance_sim: bool = True, linear_system_preconditioning: str = 'ILU0', voltage_excitations: list[float] | None = None, electric_infinity_bc: bool = False)[source]
Bases:
ElmerSolution
Class for Elmer cross-section solution parameters. By default both 2D Capacitance and 2D Inductance simulation will be run when using this
- Parameters:
p_element_order – polynomial order of p-elements
linear_system_method – Options: 1. Iterative methods “mg” (multigrid), “bicgstab” or any other iterative solver mentioned in ElmerSolver manual section 4.3.1. 2. Direct methods “umfpack”, “mumps”, “pardiso” or “superlu”. Note that the use of other methods than “umfpack” requires Elmer to be explicitly compiled with the corresponding solver software. If a direct method is used the parameters “convergence_tolerance”, “max_iterations” and “linear_system_preconditioning” are redundant
integrate_energies – Calculate energy integrals over each object. Used in EPR simulations
boundary_conditions – Parameters to determine boundary conditions for potential on the edges of simulation box. Supported keys are xmin , xmax ,`ymin` and ymax Example: boundary_conditions = {“xmin”: {“potential”: 0}}
convergence_tolerance – Convergence tolerance of the iterative solver. Applies only to capacitance part of the simulation
max_iterations – Maximum number of iterations for the iterative solver. Applies only to capacitance part of the simulation
run_inductance_sim – Can be used to skip running the inductance simulation and just do 2D capacitance. No impendance can then be calculated but useful for making EPR simulations faster
linear_system_preconditioning – Choice of preconditioner before using an iterative linear system solver
voltage_excitations – Can be used to excite signals with arbitrary voltages, instead of 1V. If this parameter is used, no capacitances will be computed.
electric_infinity_bc – effectively extend the model domain to infinity using spherical boundary conditions
- tool: ClassVar[str] = 'cross-section'
- p_element_order: int = 3
- linear_system_method: str = 'mg'
- integrate_energies: bool = False
- boundary_conditions: dict
- convergence_tolerance: float = 1e-09
- max_iterations: int = 500
- run_inductance_sim: bool = True
- linear_system_preconditioning: str = 'ILU0'
- voltage_excitations: list[float] | None = None
- electric_infinity_bc: bool = False
- class kqcircuits.simulations.export.elmer.elmer_solution.ElmerEPR3DSolution(*, name: str = '', percent_error: float = 0.005, max_error_scale: float = 2.0, max_outlier_fraction: float = 0.001, maximum_passes: int = 1, minimum_passes: int = 1, is_axisymmetric: bool = False, mesh_levels: int = 1, mesh_size: dict = <factory>, mesh_optimizer: dict | None = None, vtu_output: bool = True, save_elmer_data: bool = False, p_element_order: int = 3, linear_system_method: str = 'mg', convergence_tolerance: float = 1e-09, max_iterations: int = 1000, linear_system_preconditioning: str = 'ILU0', voltage_excitations: list[float] | None = None, electric_infinity_bc: bool = False)[source]
Bases:
ElmerSolution
Class for Elmer 3D EPR simulations. Similar to electrostatics simulations done with ElmerCapacitanceSolution, but supports separating energies by PartitionRegions. Always reports energies for each layer.
- Parameters:
p_element_order – polynomial order of p-elements
linear_system_method – Options: 1. Iterative methods “mg” (multigrid), “bicgstab” or any other iterative solver mentioned in ElmerSolver manual section 4.3.1. 2. Direct methods “umfpack”, “mumps”, “pardiso” or “superlu”. Note that the use of other methods than “umfpack” requires Elmer to be explicitly compiled with the corresponding solver software. If a direct method is used the parameters “convergence_tolerance”, “max_iterations” and “linear_system_preconditioning” are redundant
convergence_tolerance – Convergence tolerance of the iterative solver.
max_iterations – Maximum number of iterations for the iterative solver.
linear_system_preconditioning – Choice of preconditioner before using an iterative linear system solver
voltage_excitations – Can be used to excite signals with arbitrary voltages, instead of 1V. If this parameter is used, no capacitances will be computed.
electric_infinity_bc – effectively extend the model domain to infinity using spherical boundary conditions
- tool: ClassVar[str] = 'epr_3d'
- p_element_order: int = 3
- linear_system_method: str = 'mg'
- convergence_tolerance: float = 1e-09
- max_iterations: int = 1000
- linear_system_preconditioning: str = 'ILU0'
- voltage_excitations: list[float] | None = None
- electric_infinity_bc: bool = False
- kqcircuits.simulations.export.elmer.elmer_solution.get_elmer_solution(tool='capacitance', **solution_params)[source]
Returns an instance of ElmerSolution subclass.
- Parameters:
tool – Determines the subclass of ElmerSolution.
solution_params – Arguments passed for ElmerSolution subclass.
