Source code for kqcircuits.elements.hanger_resonator

# This code is part of KQCircuits
# Copyright (C) 2023 IQM Finland Oy
#
# This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
# License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
# warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with this program. If not, see
# https://www.gnu.org/licenses/gpl-3.0.html.
#
# The software distribution should follow IQM trademark policy for open-source software
# (meetiqm.com/iqm-open-source-trademark-policy). IQM welcomes contributions to the code.
# Please see our contribution agreements for individuals (meetiqm.com/iqm-individual-contributor-license-agreement)
# and organizations (meetiqm.com/iqm-organization-contributor-license-agreement).

from math import pi
from kqcircuits.pya_resolver import pya
from kqcircuits.util.parameters import Param, pdt
from kqcircuits.elements.element import Element
from kqcircuits.elements.waveguide_coplanar import WaveguideCoplanar
from kqcircuits.util.refpoints import WaveguideToSimPort


[docs] class HangerResonator(Element): """ Hanger Resonator """ coupling_length = Param(pdt.TypeDouble, "Length of the resonator center part (coupling)", 500, unit="μm") head_length = Param(pdt.TypeDouble, "Length of the resonator left waveguide (head) ", 300, unit="μm") resonator_length = Param(pdt.TypeDouble, "Total length of the resonator", 1000, unit="μm") res_a = Param(pdt.TypeDouble, "Trace width of resonator line", 10, unit="μm") res_b = Param(pdt.TypeDouble, "Gap width of resonator line", 6, unit="μm") ground_width = Param(pdt.TypeDouble, "Trace width of middle ground", 10, unit="μm")
[docs] def build(self): # If turn radius is smaller than half of the trace width it will create some overlapping masks and sharp angles if self.r < self.res_a / 2: self.raise_error_on_cell(f"Turn radius must be at least res_a/2, now r={self.r}, res_a/2={self.res_a/2}") # probe line, origin at the center of the trace points_pl = [pya.DPoint(0, 0)] points_pl.append(pya.DPoint(self.coupling_length, 0)) # distance from origin to start of the wg trace wg_start_height = -self.a / 2 - self.b - self.ground_width - self.res_b # x distance from pl port to center trace of vertical waveguides corner_x = self.r # corner arc length corner_length = pi * self.r / 2 head_length_down = self.head_length - corner_length points = [] if head_length_down > 0: # left side, head # left leg p1 = pya.DPoint(-corner_x, wg_start_height - self.res_a / 2 - self.r - head_length_down) points.append(p1) # corner p2 = pya.DPoint(-corner_x, wg_start_height - self.res_a / 2) length_without_tail = self.head_length + self.coupling_length + corner_length # If head lenght is too small don't create the curve on left side else: # Add a stub corresponding to head length if head length is shorter than the corner p2 = pya.DPoint(-max(self.head_length, 0), wg_start_height - self.res_a / 2) length_without_tail = self.coupling_length + corner_length points.append(p2) # If given resonator length is too small, don't create downwards tail if length_without_tail >= self.resonator_length: # Add a stub corresponding to tail length if head length is shorter than the corner x_tail_offset = max(0, self.resonator_length - (length_without_tail - corner_length)) p3 = pya.DPoint(self.coupling_length + x_tail_offset, wg_start_height - self.res_a / 2) points.append(p3) else: tail_length = self.resonator_length - length_without_tail # right leg (tail) p3 = pya.DPoint(self.coupling_length + corner_x, wg_start_height - self.res_a / 2) p4 = pya.DPoint(self.coupling_length + corner_x, wg_start_height - self.res_a / 2 - self.r - tail_length) points.append(p3) points.append(p4) cells_pl, _ = self.insert_cell(WaveguideCoplanar, path=points_pl) cells_resonator, _ = self.insert_cell(WaveguideCoplanar, path=points, a=self.res_a, b=self.res_b) self.copy_port("a", cells_pl) self.copy_port("b", cells_pl) self.copy_port("a", cells_resonator, "resonator_a") self.copy_port("b", cells_resonator, "resonator_b") # these are needed for simulations self.copy_port("a", cells_pl, "sim_a") self.copy_port("b", cells_pl, "sim_b")
[docs] @classmethod def get_sim_ports(cls, simulation): return [ WaveguideToSimPort("port_sim_a", use_internal_ports=False, a=simulation.a, b=simulation.b), WaveguideToSimPort("port_sim_b", use_internal_ports=False, a=simulation.a, b=simulation.b), WaveguideToSimPort("port_resonator_a", a=simulation.res_a, b=simulation.res_b), WaveguideToSimPort("port_resonator_b", a=simulation.res_a, b=simulation.res_b), ]