# This code is part of KQCircuits
# Copyright (C) 2021 IQM Finland Oy
#
# This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
# License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
# warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with this program. If not, see
# https://www.gnu.org/licenses/gpl-3.0.html.
#
# The software distribution should follow IQM trademark policy for open-source software
# (meetiqm.com/developers/osstmpolicy). IQM welcomes contributions to the code. Please see our contribution agreements
# for individuals (meetiqm.com/developers/clas/individual) and organizations (meetiqm.com/developers/clas/organization).
from kqcircuits.chips.chip import Chip
from kqcircuits.elements.finger_capacitor_square import FingerCapacitorSquare
from kqcircuits.elements.finger_capacitor_taper import FingerCapacitorTaper
from kqcircuits.elements.meander import Meander
from kqcircuits.qubits.swissmon import Swissmon
from kqcircuits.elements.waveguide_composite import WaveguideComposite, Node
from kqcircuits.elements.waveguide_coplanar_splitter import WaveguideCoplanarSplitter, t_cross_parameters
from kqcircuits.pya_resolver import pya
from kqcircuits.util.geometry_helper import point_shift_along_vector
from kqcircuits.util.parameters import Param, pdt, add_parameters_from
from kqcircuits.chips.demo import Demo
[docs]@add_parameters_from(Demo, "readout_res_lengths", "include_couplers", frames_enabled=[0, 1])
class DemoTwoface(Chip):
"""Demonstration chip for 3D-integration (multi-face) features."""
name_chip = Param(pdt.TypeString, "Name of the chip", "DT")
[docs] def build(self):
launcher_assignments = {
# N
2: "FL-QB1",
3: "PL-1-IN",
4: "PL-2-IN",
5: "FL-QB2",
# E
7: "DL-QB2",
12: "DL-QB4",
# S
14: "FL-QB4",
15: "PL-2-OUT",
16: "PL-1-OUT",
17: "FL-QB3",
# W
19: "DL-QB3",
24: "DL-QB1",
}
self.produce_launchers("ARD24", launcher_assignments)
self.produce_qubits()
if self.include_couplers:
self.produce_couplers()
self.produce_control_lines()
self.produce_readout_structures()
self.produce_probelines()
[docs] def produce_qubits(self):
dist_x = 2000 # distance from bottom chip edge
dist_y = 3200
self.produce_qubit(pya.DTrans(0, True, dist_x, 1e4 - dist_y), "QB1")
self.produce_qubit(pya.DTrans(2, False, 1e4 - dist_x, 1e4 - dist_y), "QB2")
self.produce_qubit(pya.DTrans(0, False, dist_x, dist_y), "QB3")
self.produce_qubit(pya.DTrans(2, True, 1e4 - dist_x, dist_y), "QB4")
[docs] def produce_qubit(self, trans, inst_name):
self.insert_cell(Swissmon, trans, inst_name,
cpl_length=[120, 120, 120],
port_width=[4, 10, 4],
)
[docs] def produce_couplers(self):
self.produce_coupler(1, 2)
self.produce_coupler(4, 3)
[docs] def produce_coupler(self, qubit_a_nr, qubit_b_nr):
self.insert_cell(WaveguideComposite, nodes=[
Node(self.refpoints["QB{}_port_cplr2".format(qubit_a_nr)]),
Node(self.refpoints["QB{}_port_cplr2".format(qubit_b_nr)]),
], a=4, b=9)
[docs] def produce_control_lines(self):
for qubit_nr in [1, 2, 3, 4]:
self.produce_driveline(qubit_nr)
self.produce_fluxline(qubit_nr)
[docs] def produce_driveline(self, qubit_nr):
port_drive = self.refpoints["QB{}_port_drive".format(qubit_nr)]
port_corner = self.refpoints["DL-QB{}_port_corner".format(qubit_nr)]
self.insert_cell(WaveguideComposite, nodes=[
Node(self.refpoints["DL-QB{}_base".format(qubit_nr)]),
Node(port_corner),
Node(port_drive),
], term2=self.b)
[docs] def produce_fluxline(self, qubit_nr):
port_corner = self.refpoints["FL-QB{}_port_corner".format(qubit_nr)]
port_flux = self.refpoints["QB{}_port_flux".format(qubit_nr)]
shift = 1500 if qubit_nr in [3, 4] else -1500
self.insert_cell(WaveguideComposite, nodes=[
Node(self.refpoints["FL-QB{}_base".format(qubit_nr)]),
Node(port_corner + pya.DPoint(0, shift)),
Node((port_flux.x, port_corner.y + shift)),
Node(self.refpoints["QB{}_port_flux".format(qubit_nr)])
])
[docs] def produce_readout_structures(self):
self.produce_readout_structure(1, False, 7)
self.produce_readout_structure(2, True, 6)
self.produce_readout_structure(3, False, 5)
self.produce_readout_structure(4, True, 4)
[docs] def produce_readout_structure(self, qubit_nr, mirrored, cap_finger_nr):
# non-meandering part of the resonator
point_1 = self.refpoints["QB{}_port_cplr1".format(qubit_nr)]
point_2 = point_shift_along_vector(self.refpoints["QB{}_port_cplr1".format(qubit_nr)],
self.refpoints["QB{}_base".format(qubit_nr)], -700)
point_3 = point_2 + pya.DPoint(-400 if mirrored else 400, 0)
point_4 = point_3 + pya.DPoint(-100 if mirrored else 100, 0)
waveguide_inst, _ = self.insert_cell(WaveguideComposite, nodes=[
Node(point_1),
Node(point_2),
Node(point_3, face_id=self.face_ids[1]),
Node(point_4),
])
length_nonmeander = waveguide_inst.cell.length()
# meandering part of the resonator
meander_start = point_4
meander_end = point_4 + pya.DPoint(-1300 if mirrored else 1300, 0)
self.insert_cell(Meander,
start=meander_start,
end=meander_end,
length=float(self.readout_res_lengths[qubit_nr - 1]) - length_nonmeander,
meanders=5,
face_ids=[self.face_ids[1]]
)
# capacitor and tcross waveguide connecting resonator to probeline
if mirrored:
cap_rot = 2
tcross_rot = 1
else:
cap_rot = 0
tcross_rot = 3
cap_cell = self.add_element(FingerCapacitorSquare,
finger_number=cap_finger_nr,
face_ids=[self.face_ids[1]]
)
cap_ref_rel = self.get_refpoints(cap_cell, pya.DTrans(cap_rot, False, 0, 0))
cap_trans = pya.DTrans(cap_rot, False, meander_end + cap_ref_rel["base"] - cap_ref_rel["port_a"])
_, cap_ref_abs = self.insert_cell(cap_cell, cap_trans)
tcross_cell = self.add_element(WaveguideCoplanarSplitter, **t_cross_parameters(
a=self.a, b=self.b, a2=self.a, b2=self.b, length_extra_side=30, face_ids=[self.face_ids[1]]))
tcross_ref_rel = self.get_refpoints(tcross_cell, pya.DTrans(tcross_rot, False, 0, 0))
tcross_trans = pya.DTrans(tcross_rot, False, cap_ref_abs["port_b"] - tcross_ref_rel["port_bottom"])
self.insert_cell(tcross_cell, tcross_trans, inst_name="PL{}".format(qubit_nr), label_trans=pya.DCplxTrans(0.2))
[docs] def produce_probelines(self):
self.produce_probeline("PL-1", 1, 3, True, 4)
self.produce_probeline("PL-2", 2, 4, False, 6)
[docs] def produce_probeline(self, probeline_name, qubit_a_nr, qubit_b_nr, mirrored, cap_finger_nr):
cap_cell = self.add_element(FingerCapacitorTaper,
finger_number=cap_finger_nr,
taper_length=20,
face_ids=[self.face_ids[1]]
)
cap_trans = pya.DTrans(3, False, self.refpoints["PL{}_port_left".format(qubit_a_nr)] + pya.DPoint(0, 700))
_, cap_ref_abs = self.insert_cell(cap_cell, cap_trans)
# segment 1
self.insert_cell(WaveguideComposite, nodes=[
Node(self.refpoints["{}-IN_base".format(probeline_name)]),
Node(self.refpoints["{}-IN_port_corner".format(probeline_name)] + pya.DPoint(0, -1000)),
Node((self.refpoints["PL{}_port_left".format(qubit_a_nr)].x,
self.refpoints["{}-IN_port_corner".format(probeline_name)].y - 1000)),
Node(cap_ref_abs["port_a"] + pya.DPoint(0, 700), face_id=self.face_ids[1]),
Node(cap_ref_abs["port_a"]),
])
port_1_side = "left" if mirrored else "right"
port_2_side = "right" if mirrored else "left"
# segment 2
self.insert_cell(WaveguideComposite, nodes=[
Node(cap_ref_abs["port_b"]),
Node(self.refpoints["PL{}_port_{}".format(qubit_a_nr, port_1_side)]),
], face_ids=[self.face_ids[1]])
# segment 3
self.insert_cell(WaveguideComposite, nodes=[
Node(self.refpoints["PL{}_port_{}".format(qubit_a_nr, port_2_side)]),
Node(self.refpoints["PL{}_port_{}".format(qubit_b_nr, port_1_side)]),
], face_ids=[self.face_ids[1]])
# segment 4
self.insert_cell(WaveguideComposite, nodes=[
Node(self.refpoints["{}-OUT_base".format(probeline_name)]),
Node(self.refpoints["{}-OUT_port_corner".format(probeline_name)] + pya.DPoint(0, 1000)),
Node((self.refpoints["PL{}_port_right".format(qubit_b_nr)].x,
self.refpoints["{}-OUT_port_corner".format(probeline_name)].y + 1000)),
Node(self.refpoints["PL{}_port_right".format(qubit_b_nr)] + pya.DPoint(0, -1400), face_id=self.face_ids[1]),
Node(self.refpoints["PL{}_port_{}".format(qubit_b_nr, port_2_side)]),
])