# This code is part of KQCircuits
# Copyright (C) 2021 IQM Finland Oy
#
# This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
# License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
# warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with this program. If not, see
# https://www.gnu.org/licenses/gpl-3.0.html.
#
# The software distribution should follow IQM trademark policy for open-source software
# (meetiqm.com/developers/osstmpolicy). IQM welcomes contributions to the code. Please see our contribution agreements
# for individuals (meetiqm.com/developers/clas/individual) and organizations (meetiqm.com/developers/clas/organization).
from kqcircuits.chips.chip import Chip
from kqcircuits.elements.waveguide_composite import WaveguideComposite, Node
from kqcircuits.pya_resolver import pya
from kqcircuits.util.parameters import Param, pdt, add_parameters_from
[docs]@add_parameters_from(Chip, frames_enabled=[0, 1])
class CrossingTwoface(Chip):
"""The PCell declaration for a CrossingTwoFace chip.
On the left side of the chip there is a straight vertical waveguide bottom face and a meandering waveguide crossing
multiple times on the top face. There are transmission lines at different faces at the crossings. On the right side
there is likewise a straight and a meandering waveguide, but they do not cross at any point.
"""
crossings = Param(pdt.TypeInt, "Number of double crossings", 3,
docstring="Number of pairs of flip-chip crossings")
crossing_length = Param(pdt.TypeDouble, "Crossing waveguide length", 400, unit="μm",
docstring="Length of the crossing on the top face (μm)")
cross_talk_distance = Param(pdt.TypeDouble, "Transmission line distance from meander", 300, unit="μm",
docstring="Distance between the right straight transmission line and meander on the right (μm)")
meander_face = Param(pdt.TypeString, "Meander face on right side", "single", choices=["Single", "Two Face"])
[docs] def build(self):
launchers = self.produce_launchers("SMA8")
self._produce_transmission_lines(launchers)
def _produce_transmission_lines(self, launchers):
distance = 700
right_tr_x = 5000 + distance
left_tr_x = 5000 - distance
face1_box = self.get_box(1)
# Left transmission line
nodes = [Node(self.refpoints["NW_port"]),
Node(self.refpoints["NW_port_corner"] + pya.DPoint(0, - 2 * self.r)),
Node((left_tr_x, self.refpoints["NW_port_corner"].y - 2 * self.r)),
Node((left_tr_x, face1_box.p2.y), a=self.a_capped, b=self.b_capped),
Node((left_tr_x, face1_box.p1.y + 100), a=self.a, b=self.b),
Node((left_tr_x, self.refpoints["SW_port_corner"].y + 2 * self.r)),
Node(self.refpoints["SW_port_corner"] + pya.DPoint(0, 2 * self.r)),
Node(self.refpoints["SW_port"])
]
self.insert_cell(WaveguideComposite, nodes=nodes)
# Right transmission line
nodes = [Node(self.refpoints["NE_port"]),
Node(self.refpoints["NE_port_corner"] + pya.DPoint(0, - 2 * self.r)),
Node((right_tr_x, self.refpoints["NE_port_corner"].y - 2 * self.r)),
Node((right_tr_x, face1_box.p2.y),
a=self.a_capped, b=self.b_capped),
Node((right_tr_x, face1_box.p1.y + 100), a=self.a, b=self.b),
Node((right_tr_x, self.refpoints["SE_port_corner"].y + 2 * self.r)),
Node(self.refpoints["SE_port_corner"] + pya.DPoint(0, 2 * self.r)),
Node(self.refpoints["SE_port"])
]
self.insert_cell(WaveguideComposite, nodes=nodes)
# Crossing transmission line
nodes = [Node(self.refpoints["WN_port"]),
Node((face1_box.p1.x, self.refpoints["WN_port"].y),
a=self.a_capped, b=self.b_capped)]
ref_x = left_tr_x
ref_x_1 = ref_x - self.crossing_length / 2.
ref_x_2 = ref_x + self.crossing_length / 2.
last_y = launchers["WN"][0].y
crossings = self.crossings # must be even
step = (launchers["WN"][0].y - launchers["WS"][0].y) / (crossings - 0.5) / 2
wiggle = self.crossing_length / 2. + 250
for i in range(crossings):
nodes.append(Node((ref_x - wiggle, last_y)))
nodes.append(Node((ref_x_1, last_y), face_id=self.face_ids[1]))
nodes.append(Node((ref_x_2, last_y), face_id=self.face_ids[0]))
nodes.append(Node((ref_x + wiggle, last_y)))
last_y -= step
nodes.append(Node((ref_x + wiggle, last_y)))
nodes.append(Node((ref_x_2, last_y), face_id=self.face_ids[1]))
nodes.append(Node((ref_x_1, last_y), face_id=self.face_ids[0]))
nodes.append(Node((ref_x - wiggle, last_y)))
last_y -= step
nodes.append(Node((face1_box.p1.x + 100, self.refpoints["WS_port"].y), a=self.a, b=self.b))
nodes.append(Node(self.refpoints["WS_port_corner"]))
nodes.append(Node(self.refpoints["WS_port"]))
self.insert_cell(WaveguideComposite, nodes=nodes)
# cross_talk
ref_x = right_tr_x + self.cross_talk_distance + wiggle
last_y = self.refpoints["EN_port"].y
nodes = [Node(self.refpoints["EN_port"]),
Node(self.refpoints["EN_port_corner"]),
Node((face1_box.p2.x, self.refpoints["EN_port"].y),
a=self.a_capped, b=self.b_capped)]
for i in range(crossings):
if i == 0 and self.meander_face == "Two Face":
nodes.append(
Node((ref_x + wiggle, last_y), face_id=self.face_ids[1]))
else:
nodes.append(Node((ref_x + wiggle, last_y)))
nodes.append(Node((ref_x - wiggle, last_y)))
last_y -= step
nodes.append(Node((ref_x - wiggle, last_y)))
if i == range(crossings)[-1] and self.meander_face == "Two Face":
nodes.append(Node((ref_x + wiggle, last_y), face_id=self.face_ids[0]))
else:
nodes.append(Node((ref_x + wiggle, last_y)))
last_y -= step
nodes.append(Node((face1_box.p2.x - 100, self.refpoints["ES_port"].y),
a=self.a, b=self.b))
nodes.append(Node(self.refpoints["ES_port_corner"]))
nodes.append(Node(self.refpoints["ES_port"]))
self.insert_cell(WaveguideComposite, nodes=nodes)