Source code for kqcircuits.chips.chip

# This code is part of KQCircuits
# Copyright (C) 2021 IQM Finland Oy
#
# This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
# License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
# warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with this program. If not, see
# https://www.gnu.org/licenses/gpl-3.0.html.
#
# The software distribution should follow IQM trademark policy for open-source software
# (meetiqm.com/developers/osstmpolicy). IQM welcomes contributions to the code. Please see our contribution agreements
# for individuals (meetiqm.com/developers/clas/individual) and organizations (meetiqm.com/developers/clas/organization).
# pylint: disable=R0904
# TODO: Consider refactoring to reduce number of public methods

import logging
import numpy

from kqcircuits.defaults import (
    default_layers,
    default_junction_type,
    default_sampleholders,
    default_mask_parameters,
    default_bump_parameters,
    default_marker_type,
)
from kqcircuits.elements.chip_frame import ChipFrame
from kqcircuits.elements.element import Element
from kqcircuits.elements.launcher import Launcher
from kqcircuits.elements.launcher_dc import LauncherDC
from kqcircuits.pya_resolver import pya
from kqcircuits.util.merge import merge_layout_layers_on_face
from kqcircuits.util.parameters import Param, pdt, add_parameters_from, add_parameter
from kqcircuits.test_structures.junction_test_pads.junction_test_pads import JunctionTestPads
from kqcircuits.test_structures.stripes_test import StripesTest
from kqcircuits.util.groundgrid import make_grid
from kqcircuits.elements.tsvs.tsv import Tsv
from kqcircuits.elements.flip_chip_connectors.flip_chip_connector_dc import FlipChipConnectorDc
from kqcircuits.elements.flip_chip_connectors.flip_chip_connector_rf import FlipChipConnectorRf


[docs] @add_parameters_from(Tsv, "tsv_type") @add_parameters_from(FlipChipConnectorRf, "connector_type") @add_parameter(ChipFrame, "box", hidden=True) @add_parameters_from( ChipFrame, "name_mask", "name_chip", "name_copy", "name_brand", "chip_dicing_in_base_metal", "dice_grid_margin", marker_types=[default_marker_type] * 8, ) class Chip(Element): """Base PCell declaration for chips. Produces labels in pixel corners, dicing edge, markers and optionally grid for all chip faces. Contains methods for producing launchers in face 0 and connectors between faces 0 and 1. """ LIBRARY_NAME = "Chip Library" LIBRARY_DESCRIPTION = "Superconducting quantum circuit library for chips." LIBRARY_PATH = "chips" with_grid = Param(pdt.TypeBoolean, "Make ground plane grid", False) merge_base_metal_gap = Param(pdt.TypeBoolean, "Merge grid and other gaps into base_metal_gap layer", False) a_capped = Param( pdt.TypeDouble, "Capped center conductor width", 10, unit="μm", docstring="Width of center conductor in the capped region (μm)", ) b_capped = Param(pdt.TypeDouble, "Width of gap in the capped region ", 10, unit="μm") # TSV grid parameters with_gnd_tsvs = Param(pdt.TypeBoolean, "Make a grid of through-silicon vias (TSVs)", False) with_face1_gnd_tsvs = Param(pdt.TypeBoolean, "Make a grid of TSVs on top chip", False) tsv_grid_spacing = Param(pdt.TypeDouble, "TSV grid spacing (center to center)", 300, unit="μm") edge_from_tsv = Param(pdt.TypeDouble, "TSV grid clearance to chip edge (center to edge)", 550, unit="μm") tsv_edge_to_tsv_edge_separation = Param( pdt.TypeDouble, "TSV grid clearance to existing TSVs (edge to edge)", 250, unit="μm" ) tsv_edge_to_nearest_element = Param( pdt.TypeDouble, "TSV grid clearance to other elements (edge to edge)", 100, unit="μm" ) # Bump grid parameters with_gnd_bumps = Param(pdt.TypeBoolean, "Make a grid of indium bumps", False) bump_grid_spacing = Param( pdt.TypeDouble, "Bump grid spacing (center to center)", default_bump_parameters["bump_grid_spacing"], unit="μm" ) edge_from_bump = Param( pdt.TypeDouble, "Bump grid clearance to chip edge (center to edge)", default_bump_parameters["edge_from_bump"], unit="μm", ) bump_edge_to_bump_edge_separation = Param( pdt.TypeDouble, "Bump grid clearance to existing bumps (edge to edge)", default_bump_parameters["bump_edge_to_bump_edge_separation"], unit="μm", ) frames_enabled = Param(pdt.TypeList, "List of face ids (integers) for which a ChipFrame is drawn", [0]) frames_marker_dist = Param(pdt.TypeList, "Marker distance from edge for each chip frame", [1500, 1000], unit="[μm]") frames_diagonal_squares = Param(pdt.TypeList, "Number of diagonal marker squares for each chip frame", [10, 2]) frames_mirrored = Param( pdt.TypeList, "List of booleans specifying if the frame is mirrored for each chip frame", [False, True] ) frames_dice_width = Param(pdt.TypeList, "Dicing street width for each chip frame", [200, 140], unit="[μm]") face_boxes = Param( pdt.TypeShape, "List of chip frame sizes (type DBox) for each face. None uses the chips box parameter.", default=[None, pya.DBox(pya.DPoint(1500, 1500), pya.DPoint(8500, 8500))], hidden=True, )
[docs] def display_text_impl(self): # Provide a descriptive text for the cell return "{}".format(self.name_chip)
[docs] def can_create_from_shape_impl(self): return self.shape.is_box()
[docs] def parameters_from_shape_impl(self): self.box = pya.DBox(0, 0, self.shape.box_dwidth, self.shape.box_dheight)
[docs] def transformation_from_shape_impl(self): return pya.Trans(self.shape.box_p1)
[docs] @staticmethod def get_launcher_assignments(chip_cell): """Returns a dictionary of launcher assignments (port_id: launcher_id) for the chip. Args: chip_cell: Cell object of the chip """ launcher_assignments = {} for inst in chip_cell.each_inst(): port_name = inst.property("port_id") if port_name is not None: launcher_assignments[port_name] = inst.property("id") return launcher_assignments
[docs] def produce_junction_tests(self, junction_type=default_junction_type): """Produces junction test pads in the chip. Args: junction_type: A string defining the type of junction used in the test pads. """ junction_tests_w = self.add_element( JunctionTestPads, margin=50, area_height=1300, area_width=2500, junctions_horizontal=True, junction_type=junction_type, display_name="JunctionTestsHorizontal", ) junction_tests_h = self.add_element( JunctionTestPads, margin=50, area_height=2500, area_width=1300, junctions_horizontal=True, junction_type=junction_type, display_name="JunctionTestsVertical", ) self.insert_cell(junction_tests_h, pya.DTrans(0, False, 0.35e3, (10e3 - 2.5e3) / 2), "testarray_w") self.insert_cell(junction_tests_w, pya.DTrans(0, False, (10e3 - 2.5e3) / 2, 0.35e3), "testarray_s") self.insert_cell(junction_tests_h, pya.DTrans(0, False, 9.65e3 - 1.3e3, (10e3 - 2.5e3) / 2), "testarray_e") self.insert_cell(junction_tests_w, pya.DTrans(0, False, (10e3 - 2.5e3) / 2, 9.65e3 - 1.3e3), "testarray_n")
[docs] def produce_opt_lit_tests(self): """Produces optical lithography test stripes at chip corners.""" num_stripes = 20 length = 100 min_width = 1 max_width = 15 step = 3 first_stripes_width = 2 * num_stripes * min_width combined_cell = self.layout.create_cell("Stripes") for i, width in enumerate(numpy.arange(max_width + 0.1 * step, min_width, -step)): stripes_cell = self.add_element( StripesTest, num_stripes=num_stripes, stripe_width=width, stripe_length=length ) # horizontal combined_cell.insert( pya.DCellInstArray( stripes_cell.cell_index(), pya.DCplxTrans(1, 0, False, -880, 2 * i * length + first_stripes_width - 200), ) ) # vertical combined_cell.insert( pya.DCellInstArray( stripes_cell.cell_index(), pya.DCplxTrans(1, 90, False, 2 * i * length + length + first_stripes_width - 200, -880), ) ) # diagonal diag_offset = 2 * num_stripes * width / numpy.sqrt(8) combined_cell.insert( pya.DCellInstArray( stripes_cell.cell_index(), pya.DCplxTrans(1, -45, False, 250 + i * length - diag_offset, 250 + i * length + diag_offset), ) ) self.insert_cell(combined_cell, pya.DCplxTrans(1, 0, False, 1500, 1500)) self.insert_cell(combined_cell, pya.DCplxTrans(1, 90, False, 8500, 1500)) self.insert_cell(combined_cell, pya.DCplxTrans(1, 180, False, 8500, 8500)) self.insert_cell(combined_cell, pya.DCplxTrans(1, 270, False, 1500, 8500))
[docs] def produce_ground_grid(self): """Produces ground grid on all faces with ChipFrames. This method is called in build(). Override this method to produce a different set of chip frames. """ for face in self.frames_enabled: self.produce_ground_on_face_grid(self.get_box(int(face)), int(face))
[docs] def produce_ground_on_face_grid(self, box, face_id): """Produces ground grid in the given face of the chip. Args: box: pya.DBox within which the grid is created face_id (int): ID of the face where the grid is created """ grid_area = box * (1 / self.layout.dbu) protection = pya.Region(self.cell.begin_shapes_rec(self.get_layer("ground_grid_avoidance", face_id))).merged() grid_mag_factor = 1 region_ground_grid = make_grid( grid_area, protection, grid_step=10 * (1 / self.layout.dbu) * grid_mag_factor, grid_size=5 * (1 / self.layout.dbu) * grid_mag_factor, ) self.cell.shapes(self.get_layer("ground_grid", face_id)).insert(region_ground_grid)
[docs] def produce_frame(self, frame_parameters, trans=pya.DTrans()): """Produces a chip frame and markers for the given face. Args: frame_parameters: PCell parameters for the chip frame trans: DTrans for the chip frame, default=pya.DTrans() """ self.insert_cell(ChipFrame, trans, **frame_parameters)
[docs] def merge_layout_layers_on_face(self, face, tolerance=0.004): """Creates "base_metal_gap" layer on given face. The layer shape is combination of three layers using subtract (-) and insert (+) operations: "base_metal_gap" = "base_metal_gap_wo_grid" - "base_metal_addition" + "ground_grid" Args: face: face dictionary containing layer names as keys and layer info objects as values tolerance: gap length to be ignored while merging (µm) """ merge_layout_layers_on_face(self.layout, self.cell, face, tolerance)
[docs] def merge_layout_layers(self): """Creates "base_metal_gap" layers on all faces. The layer shape is combination of three layers using subtract (-) and insert (+) operations: "base_metal_gap" = "base_metal_gap_wo_grid" - "base_metal_addition" + "ground_grid" This method is called in build(). Override this method to produce a different set of chip frames. """ for i in range(len(self.face_ids)): self.merge_layout_layers_on_face(self.face(i))
[docs] def produce_structures(self): """Produces chip frame and possibly other structures before the ground grid. This method is called in post_build(). Override this method to produce a different set of chip frames. """ for i, face in enumerate(self.frames_enabled): face = int(face) frame_box = self.get_box(face) frame_parameters = self.pcell_params_by_name( ChipFrame, box=frame_box, face_ids=[self.face_ids[face]], use_face_prefix=len(self.frames_enabled) > 1, dice_width=float(self.frames_dice_width[i]), text_margin=default_mask_parameters[self.face_ids[face]]["text_margin"], marker_dist=float(self.frames_marker_dist[i]), diagonal_squares=int(self.frames_diagonal_squares[i]), marker_types=self.marker_types[i * 4 : (i + 1) * 4], ) if str(self.frames_mirrored[i]).lower() == "true": # Accept both boolean and string representation frame_trans = pya.DTrans(frame_box.center()) * pya.DTrans.M90 * pya.DTrans(-frame_box.center()) else: frame_trans = pya.DTrans(0, 0) self.produce_frame(frame_parameters, frame_trans) if self.with_gnd_tsvs: self._produce_ground_tsvs(faces=[0, 2]) if self.with_face1_gnd_tsvs: tsv_box = self.get_box(1).enlarged(pya.DVector(-self.edge_from_tsv, -self.edge_from_tsv)) self._produce_ground_tsvs(faces=[3, 1], tsv_box=tsv_box)
[docs] def get_box(self, face=0): """ Get the chip frame box for the specified face, correctly resolving defaults. Args: face: Integer specifying face, default 0 Returns: pya.DBox box for the specified face """ box = self.face_boxes[face] return box if box is not None else self.box
[docs] def get_filter_regions(self, filter_layer_list): """Transforms the filter_layer_list into filter_regions dictionary. Args: filter_layer_list: tuple (layer_name, face, distance) specifying the distances to filtering layers Returns: dict with distances as keys and filtering regions as values """ filter_regions = {distance: pya.Region() for _, _, distance in filter_layer_list} for layer, face, distance in filter_layer_list: if layer in self.face(face): filter_regions[distance] += pya.Region(self.cell.begin_shapes_rec(self.get_layer(layer, face))) return {distance: region for distance, region in filter_regions.items() if not region.is_empty()}
[docs] def insert_filtered_elements(self, element_cell, shape_layers, filter_regions, locations, rotation=0): """Inserts elements into given locations filtered by filter_regions. Args: element_cell: pya.Cell specifying the element to be repeated in the grid shape_layers: tuple (layer_name, face) specifying the shape layers on the element_cell filter_regions: dict with distances as keys and filtering regions as values locations: list of grid element locations as DPoints rotation: element rotation in degrees Returns: list of filtered grid element locations """ # Get element shape shape = pya.Region() for shape_layer in shape_layers: shape += pya.Region(element_cell.begin_shapes_rec(self.get_layer(*shape_layer))) shape.transform(pya.ICplxTrans(1, rotation, False, 0, 0)) # Filter locations locations_itype = [pya.Vector(pos.to_itype(self.layout.dbu)) for pos in locations] for distance, filter_region in filter_regions.items(): # Create expanded shape polygon shape_polygons = list(shape.sized(distance / self.layout.dbu).merged().each()) if len(shape_polygons) == 1: shape_polygon = shape_polygons[0] # use actual element shape elif len(shape_polygons) > 1: shape_polygon = pya.Polygon(shape.bbox()) # use bounding box if shape consists of multiple polygons else: shape_polygon = pya.Polygon(pya.Box(2)) # use small box around origin if shape_region is empty shape_center = shape_polygon.bbox().center() # Filter locations test_region = pya.Region([shape_polygon.moved(pos) for pos in locations_itype]) test_region.merged_semantics = False pass_region = test_region.outside(filter_region) locations_itype = [p.bbox().center() - shape_center for p in pass_region] # Insert elements into filtered locations passed_locations = [pos.to_dtype(self.layout.dbu) for pos in locations_itype] for passed_location in passed_locations: self.insert_cell(element_cell, pya.DCplxTrans(1, rotation, False, passed_location)) return passed_locations
[docs] def get_ground_bump_locations(self, bump_box): """ Define the locations for a grid. This method returns the full grid. Args: bump_box: DBox specifying the region that should be filled with ground bumps Returns: list of DPoint coordinates where a ground bump can be placed """ return self.make_grid_locations(bump_box, delta_x=self.bump_grid_spacing, delta_y=self.bump_grid_spacing)
def _produce_ground_bumps(self, faces=[0, 1]): # pylint: disable=dangerous-default-value """Produces a grid of indium bumps between given faces. The bumps avoid ground grid avoidance on both faces, and keep a minimum distance to existing bumps. """ logging.info("Starting bump grid generation") # Count existing bump count for logging purpose existing_bump_region = pya.Region() for face in faces: existing_bump_region += pya.Region(self.cell.begin_shapes_rec(self.get_layer("indium_bump", face))) existing_bump_count = existing_bump_region.merged().count() # Specify bump element, filter regions, and locations bump = self.add_element(FlipChipConnectorDc, face_ids=[self.face_ids[face] for face in faces]) shape_layers = [("underbump_metallization", face) for face in faces] filter_regions = self.get_filter_regions( [("ground_grid_avoidance", face, 0) for face in faces] + [("indium_bump", face, self.bump_edge_to_bump_edge_separation) for face in faces] + [("through_silicon_via", face, self.tsv_edge_to_nearest_element) for face in faces] ) bump_box = self.get_box(1).enlarged(pya.DVector(-self.edge_from_bump, -self.edge_from_bump)) locations = self.get_ground_bump_locations(bump_box) # Produce bump grid if isinstance(locations, dict): # bumps are grouped by rotation bump_locations = [] for rotation, locs in locations.items(): bump_locations += self.insert_filtered_elements(bump, shape_layers, filter_regions, locs, rotation) else: # Use default rotation for all bumps bump_locations = self.insert_filtered_elements(bump, shape_layers, filter_regions, locations) logging.info( f"Found {existing_bump_count} existing bumps and inserted {len(bump_locations)} bumps on grid, " f"totalling {existing_bump_count + len(bump_locations)} bumps." ) return bump_locations
[docs] def post_build(self): self.produce_structures() if self.with_gnd_bumps: self._produce_ground_bumps() if self.with_grid: self.produce_ground_grid() if self.merge_base_metal_gap: self.merge_layout_layers() self._produce_instance_name_labels()
def _produce_instance_name_labels(self): for inst in self.cell.each_inst(): inst_id = inst.property("id") if inst_id: cell = self.layout.create_cell( "TEXT", "Basic", {"layer": default_layers["instance_names"], "text": inst_id, "mag": 400.0} ) label_trans = inst.dcplx_trans # prevent the label from being upside-down or mirrored if 90 < label_trans.angle < 270: label_trans.angle += 180 label_trans.mirror = False # optionally apply relative transformation to the label rel_label_trans_str = inst.property("label_trans") if rel_label_trans_str is not None: rel_label_trans = pya.DCplxTrans.from_s(rel_label_trans_str) label_trans = label_trans * rel_label_trans self.insert_cell(cell, label_trans)
[docs] def produce_launchers(self, sampleholder_type, launcher_assignments=None, enabled=None, face_id=0): """Produces launchers for typical sample holders and sets chip size (``self.box``) accordingly. This is a wrapper around ``produce_n_launchers()`` to generate typical launcher configurations. Args: sampleholder_type: name of the sample holder type launcher_assignments: dictionary of (port_id: name) that assigns a name to some of the launchers enabled: list of enabled launchers, empty means all face_id: index of face_ids in which to insert the launchers Returns: launchers as a dictionary :code:`{name: (point, heading, distance from chip edge)}` """ if sampleholder_type == "SMA8": # this is special: it has default launcher assignments if not launcher_assignments: launcher_assignments = {1: "NW", 2: "NE", 3: "EN", 4: "ES", 5: "SE", 6: "SW", 7: "WS", 8: "WN"} if sampleholder_type in default_sampleholders: return self.produce_n_launchers( **default_sampleholders[sampleholder_type], launcher_assignments=launcher_assignments, enabled=enabled, face_id=face_id, ) return {}
[docs] def produce_n_launchers( self, n, launcher_type, launcher_width, launcher_gap, launcher_indent, pad_pitch, launcher_assignments=None, port_id_remap=None, launcher_frame_gap=None, enabled=None, chip_box=None, face_id=0, ): """Produces n launchers at default locations and optionally changes the chip size. Launcher pads are equally distributed around the chip. This may be overridden by specifying the number of pads desired per chip side if ``n`` is an array of 4 numbers. Pads not in ``launcher_assignments`` are disabled by default. The ``enabled`` argument may override this. If neither argument is defined then all pads are enabled with default names. Args: n: number of launcher pads or an array of pad numbers per side launcher_type: type of the launchers, "RF" or "DC" launcher_width: width of the launchers launcher_gap: pad to ground gap of the launchers launcher_indent: distance between the chip edge and pad port pad_pitch: distance between pad centers launcher_frame_gap: gap of the launcher pad at the frame launcher_assignments: dictionary of (port_id: name) that assigns a name to some of the launchers port_id_remap: by default, left-most top edge launcher has port_id set to 1 and port_ids increment for other launchers in clockwise order. port_id_remap is a dictionary [1..n] -> [1..n] such that for port_id_remap[x] = y, x is the port_id of the launcher in default order and y is the port_id of that launcher in your desired order. For example, to flip the launcher order by chip's y-axis, set port_id_remap to ``{i+1: ((n - i + n/4-1) % n) + 1 for i in range(n)}`` enabled: optional list of enabled launchers chip_box: optionally changes the chip size (``self.box``) face_id: index of face_ids in which to insert the launchers Returns: launchers as a dictionary :code:`{name: (point, heading, distance from chip edge)}` """ if launcher_frame_gap is None: launcher_frame_gap = launcher_gap if chip_box is not None: self.box = chip_box if launcher_type == "DC": launcher_cell = self.add_element(LauncherDC, width=launcher_width, face_ids=[self.face_ids[face_id]]) else: launcher_cell = self.add_element( Launcher, s=launcher_width, l=launcher_width, a_launcher=launcher_width, b_launcher=launcher_gap, launcher_frame_gap=launcher_frame_gap, face_ids=[self.face_ids[face_id]], ) pads_per_side = n if not isinstance(n, tuple): n = int((n + n % 4) / 4) pads_per_side = [n, n, n, n] dirs = (90, 0, -90, 180) trans = ( pya.DTrans(3, 0, self.box.p1.x, self.box.p2.y), pya.DTrans(2, 0, self.box.p2.x, self.box.p2.y), pya.DTrans(1, 0, self.box.p2.x, self.box.p1.y), pya.DTrans(0, 0, self.box.p1.x, self.box.p1.y), ) _w = self.box.p2.x - self.box.p1.x _h = self.box.p2.y - self.box.p1.y sides = [_w, _h, _w, _h] return self._insert_launchers( dirs, enabled, launcher_assignments, port_id_remap, launcher_cell, launcher_indent, launcher_width, pad_pitch, pads_per_side, sides, trans, face_id=face_id, )
def _insert_launchers( self, dirs, enabled, launcher_assignments, port_id_remap, launcher_cell, launcher_indent, launcher_width, pad_pitch, pads_per_side, sides, trans, face_id, ): """Inserts launcher cell at predefined parameters and returns launcher cells""" launcher_order_idx, launchers = 0, {} for np, dr, tr, si in zip(pads_per_side, dirs, trans, sides): for i in range(np): launcher_order_idx += 1 if port_id_remap: port_id = port_id_remap.get(launcher_order_idx, launcher_order_idx) else: port_id = launcher_order_idx if launcher_assignments: if port_id not in launcher_assignments: continue name = launcher_assignments[port_id] else: name = str(port_id) if enabled and name not in enabled: continue loc = tr * pya.DPoint(launcher_indent, si / 2 + pad_pitch * (i + 0.5 - np / 2)) launchers[name] = (loc, dr, launcher_width) transf = pya.DCplxTrans(1, dr, False, loc) launcher_inst, launcher_refpoints = self.insert_cell(launcher_cell, transf, name) launcher_inst.set_property("port_id", port_id) self.add_port(name, launcher_refpoints["port"], face_id=face_id) return launchers
[docs] def make_grid_locations(self, box, delta_x=100, delta_y=100, x0=0, y0=0): # pylint: disable=no-self-use """ Define the locations for a grid. This method returns the full grid. Args: box: DBox specifying a region for a grid delta_x: Int or float specifying the grid separation along the x dimension delta_y: Int or float specifying the grid separation along the y dimension x0: Int or float specifying the center point displacement along the x-axis y0: Int or float specifying the center point displacement along the y-axis Returns: list of DPoint coordinates for the grid. """ # array size for grid creation x_neg = int((box.width() / 2 + x0) / delta_x) x_pos = int((box.width() / 2 - x0) / delta_x) y_neg = int((box.height() / 2 + y0) / delta_y) y_pos = int((box.height() / 2 - y0) / delta_y) locations = [] for i in numpy.linspace(-x_neg, x_pos, x_neg + x_pos + 1): for j in numpy.linspace(-y_neg, y_pos, y_neg + y_pos + 1): locations.append(box.center() + pya.DPoint(x0 + i * delta_x, y0 + j * delta_y)) return locations
[docs] def get_ground_tsv_locations(self, tsv_box): """ Define the locations for a grid. This method returns the full grid. Args: box: DBox specifying the region that should be filled with TSVs Returns: list of DPoint coordinates where a ground bump can be placed """ return self.make_grid_locations(tsv_box, delta_x=self.tsv_grid_spacing, delta_y=self.tsv_grid_spacing)
def _produce_ground_tsvs(self, faces=[0, 2], tsv_box=None): # pylint: disable=dangerous-default-value """Produces a grid of TSVs between given faces. The TSVs avoid ground grid avoidance on both faces, and keep a distance to existing elements. """ logging.info(f"Starting TSV grid generation on face(s) {[self.face_ids[face] for face in faces]}") # Count existing TSV count for logging purpose existing_tsv_region = pya.Region() for face in faces: existing_tsv_region += pya.Region(self.cell.begin_shapes_rec(self.get_layer("through_silicon_via", face))) existing_tsv_count = existing_tsv_region.merged().count() # Specify tsv element, filter regions, and locations tsv = self.add_element(Tsv, face_ids=[self.face_ids[face] for face in faces]) shape_layers = [("through_silicon_via", face) for face in faces] filter_regions = self.get_filter_regions( [("ground_grid_avoidance", face, 0) for face in faces] + [("through_silicon_via_avoidance", face, 0) for face in faces] + [("indium_bump", face, self.tsv_edge_to_nearest_element) for face in faces] + [("base_metal_gap_wo_grid", face, self.tsv_edge_to_nearest_element) for face in faces] + [("through_silicon_via", face, self.tsv_edge_to_tsv_edge_separation) for face in faces] ) locations = self.get_ground_tsv_locations( tsv_box if tsv_box is not None else self.box.enlarged(-self.edge_from_tsv) ) # Produce TSV grid if isinstance(locations, dict): # TSVs are grouped by rotation tsv_locations = [] for rotation, locs in locations.items(): tsv_locations += self.insert_filtered_elements(tsv, shape_layers, filter_regions, locs, rotation) else: # Use default rotation for all TSVs tsv_locations = self.insert_filtered_elements(tsv, shape_layers, filter_regions, locations) logging.info( f"Found {existing_tsv_count} existing TSVs and inserted {len(tsv_locations)} TSVs on grid, " f"totalling {existing_tsv_count + len(tsv_locations)} TSVs." ) return tsv_locations