iqm.benchmarks.compressive_gst.gst_analysis.process_layout#
- iqm.benchmarks.compressive_gst.gst_analysis.process_layout(args: Tuple[Dataset, List[int], int]) Tuple[List[int], dict[str, Any], List[BenchmarkObservation], DataFrame, DataFrame, DataFrame] #
Process a single qubit layout for Gate Set Tomography analysis.
This function performs the full GST workflow for a single qubit layout: 1. Convert counts to mGST format 2. Run mGST reconstruction 3. Perform gauge optimization 4. Generate reports and metrics 5. Run bootstrap analysis if configured 6. Format results into dataframes and observations
- Parameters:
args (Tuple[Dataset, List[int], int]) – Tuple containing: dataset: xr.Dataset, qubit_layout: List[int], pdim: int
- Returns:
- List[int]
The input qubit layout being processed
- results_dict: dict[str, Any]
Dictionary containing all raw and processed results
- layout_observations: List[BenchmarkObservation]
List of benchmark observations for this layout
- df_g_final: DataFrame
DataFrame containing gate metrics (fidelity, diamond distance, etc.)
- df_o_final: DataFrame
DataFrame containing non-gate metrics (SPAM errors, fit quality)
- df_g_evals: DataFrame
DataFrame containing Choi matrix eigenvalues (for rank > 1)
- Return type:
qubit_layout