iqm.benchmarks.compressive_gst.gst_analysis.process_plots#
- iqm.benchmarks.compressive_gst.gst_analysis.process_plots(dataset: Dataset, qubit_layout: List[int], results_dict: dict[str, Any], df_g_final: DataFrame, df_o_final: DataFrame, df_g_evals_final: DataFrame) dict[str, Figure] #
Process and generate all plots for a single qubit layout.
This function creates various visualization plots for gate set tomography results, including gate metrics tables, process matrices, and SPAM (State Preparation And Measurement) matrices in both real and imaginary parts.
- Parameters:
dataset (Dataset) – xarray Dataset containing experimental data and configuration attributes
qubit_layout (List[int]) – List of qubit indices defining the current layout
results_dict (dict[str, Any]) – Dictionary containing gauge-optimized gates, POVM elements, and states in both standard and Pauli basis
df_g_final (DataFrame) – DataFrame containing gate metrics such as fidelity and diamond distance
df_o_final (DataFrame) – DataFrame containing non-gate metrics such as SPAM errors
df_g_evals_final (DataFrame) – DataFrame containing Choi matrix eigenvalues (can be empty)
- Returns:
- Dictionary mapping plot names to matplotlib Figure objects.
Keys follow the pattern “layout_{qubit_layout}_{plot_type}”
- Return type:
layout_plots