iqm.benchmarks.benchmark.BenchmarkConfigurationBase#
- class iqm.benchmarks.benchmark.BenchmarkConfigurationBase(*, benchmark: Type[BenchmarkBase], shots: int = 256, max_gates_per_batch: int | None = None, calset_id: str | None = None, routing_method: Literal['basic', 'lookahead', 'stochastic', 'sabre', 'none'] = 'sabre', physical_layout: Literal['fixed', 'batching'] = 'fixed')#
Bases:
BaseModel
Benchmark configuration base.
- Parameters:
- benchmark#
the benchmark configuration.
- Type:
Type[BenchmarkBase]
- shots#
the number of shots to use in circuit execution. * Default for all benchmarks is 2**8.
- Type:
- max_gates_per_batch#
the maximum number of gates per circuit batch. * Default for all benchmarks is None.
- Type:
Optional[int]
- calset_id#
the calibration ID to use in circuit execution. * Default for all benchmarks is None (uses last available calibration ID).
- Type:
Optional[str]
- routing_method#
the Qiskit routing method to use in transpilation. * Default for all benchmarks is “sabre”.
- Type:
Literal[“basic”, “lookahead”, “stochastic”, “sabre”, “none”]
- physical_layout#
whether physical layout is constrained during transpilation to selected physical qubits. - “fixed”: physical layout is constrained during transpilation to the selected initial physical qubits. - “batching”: physical layout is allowed to use any other physical qubits, and circuits are batched according to final measured qubits. * Default for all benchmarks is “fixed”.
- Type:
Literal[“fixed”, “batching”]
Attributes
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.
Methods
- model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}#
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_fields: ClassVar[Dict[str, FieldInfo]] = {'benchmark': FieldInfo(annotation=Type[BenchmarkBase], required=True), 'calset_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'max_gates_per_batch': FieldInfo(annotation=Union[int, NoneType], required=False, default=None), 'physical_layout': FieldInfo(annotation=Literal['fixed', 'batching'], required=False, default='fixed'), 'routing_method': FieldInfo(annotation=Literal['basic', 'lookahead', 'stochastic', 'sabre', 'none'], required=False, default='sabre'), 'shots': FieldInfo(annotation=int, required=False, default=256)}#
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.
This replaces Model.__fields__ from Pydantic V1.