iqm.benchmarks.compressive_gst.gst_analysis.process_bootstrap_samples#
- iqm.benchmarks.compressive_gst.gst_analysis.process_bootstrap_samples(y_sampled: ndarray, attrs: dict[str, Any], init: list[ndarray], target_mdl: Model, identifier: str) tuple[ndarray, ndarray, ndarray, ndarray, ndarray, bool] #
Process a single bootstrap sample for Gate Set Tomography.
This function performs a GST analysis on a sampled dataset, applies gauge optimization, and generates result reports.
- Parameters:
y_sampled (ndarray) – ndarray A 2D array of measurement outcomes for sequences in J; Each column contains the outcome probabilities for a fixed sequence
attrs (dict[str, Any]) – dict[str, Any] Dictionary containing configuration parameters for the GST algorithm
init (list[ndarray]) – list[ndarray] Initial values for the gate set optimization [K, E, rho]
target_mdl (Model) – Model The target gate set model
identifier (str) – str String identifier for the current qubit layout
- Returns:
- ndarray
Array of optimized gate tensors in Pauli basis
- E_opt_pp: ndarray
Optimized POVM elements in Pauli basis
- rho_opt_pp: ndarray
Optimized initial state in Pauli basis
- df_g.values: ndarray
Array of gate quality measures
- df_o.values: ndarray
Array of SPAM and other quality measures
- opt_success: bool
Whether the optimization successfully converged below expected least-squares error
- Return type:
X_opt_pp