iqm.benchmarks.coherence.coherence.CoherenceConfiguration#
- class iqm.benchmarks.coherence.coherence.CoherenceConfiguration(*, benchmark: ~typing.Type[~iqm.benchmarks.benchmark_definition.Benchmark] = <class 'iqm.benchmarks.coherence.coherence.CoherenceBenchmark'>, shots: int = 1000, max_gates_per_batch: int | None = None, max_circuits_per_batch: int | None = None, calset_id: str | None = None, routing_method: ~typing.Literal['basic', 'lookahead', 'stochastic', 'sabre', 'none'] = 'sabre', physical_layout: ~typing.Literal['fixed', 'batching'] = 'fixed', use_dd: bool | None = False, dd_strategy: ~iqm.iqm_client.models.DDStrategy | None = None, delays: list[float], optimize_sqg: bool = True, qiskit_optim_level: int = 3, coherence_exp: str = 't1', qubits_to_plot: list[int])#
Bases:
BenchmarkConfigurationBase
Coherence configuration.
- Parameters:
shots (int) –
max_gates_per_batch (int | None) –
max_circuits_per_batch (int | None) –
calset_id (str | None) –
routing_method (Literal['basic', 'lookahead', 'stochastic', 'sabre', 'none']) –
physical_layout (Literal['fixed', 'batching']) –
use_dd (bool | None) –
dd_strategy (DDStrategy | None) –
optimize_sqg (bool) –
qiskit_optim_level (int) –
coherence_exp (str) –
- benchmark#
The benchmark class used for coherence analysis, defaulting to CoherenceBenchmark.
- Type:
Type[Benchmark]
- optimize_sqg#
Indicates whether Single Qubit Gate Optimization is applied during transpilation, default is True.
- Type:
- coherence_exp#
Specifies the type of coherence experiment, either “t1” or “echo”, default is “t1”.
- Type:
Attributes
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
shots
qubits_to_plot
max_gates_per_batch
max_circuits_per_batch
calset_id
routing_method
physical_layout
use_dd
dd_strategy
Methods
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].