iqm.benchmarks.coherence.coherence.CoherenceBenchmark#
- class iqm.benchmarks.coherence.coherence.CoherenceBenchmark(backend_arg: IQMBackendBase, configuration: CoherenceConfiguration)#
Bases:
BenchmarkThis benchmark estimates the coherence properties of the qubits and computational resonator.
Attributes
nameMethods
_generate_t1_circuits(qc, nqubits, delay)Generates T1 coherence circuits.
_generate_t2_echo_circuits(qc, nqubits, delay)Generates T2 echo coherence circuits.
add_all_meta_to_dataset(dataset)Adds all configuration metadata and circuits to the dataset variable
analysis_function(run)Analysis function for a coherence experiment
checkerboard_groups_from_coupling(coupling_map)Assign Group A and B to qubits based on a checkerboard pattern inferred from the connectivity graph (assumed to be grid-like).
execute(backend)Executes the benchmark.
generate_coherence_circuits(nqubits)Generates coherence circuits for the given qubit set and delay times.
- Parameters:
backend_arg (IQMBackendBase) –
configuration (CoherenceConfiguration) –
- static analysis_function(run: BenchmarkRunResult) BenchmarkAnalysisResult#
Analysis function for a coherence experiment
- Parameters:
run (RunResult) – A coherence experiment run for which analysis result is created.
- Returns:
AnalysisResult corresponding to coherence experiment.
- Return type:
- generate_coherence_circuits(nqubits: int) list[QuantumCircuit]#
Generates coherence circuits for the given qubit set and delay times.
- add_all_meta_to_dataset(dataset: Dataset)#
Adds all configuration metadata and circuits to the dataset variable
- Parameters:
dataset (xr.Dataset) – The xarray dataset
- checkerboard_groups_from_coupling(coupling_map: List[Tuple[int, int]]) Tuple[List[int], List[int]]#
Assign Group A and B to qubits based on a checkerboard pattern inferred from the connectivity graph (assumed to be grid-like).
- execute(backend: IQMBackendBase) Dataset#
Executes the benchmark.
- Parameters:
backend (IQMBackendBase) –
- Return type:
Dataset