iqm.benchmarks.compressive_gst.gst_analysis.generate_unit_rank_gate_results#
- iqm.benchmarks.compressive_gst.gst_analysis.generate_unit_rank_gate_results(dataset: Dataset, qubit_layout: List[int], df_g: DataFrame, X_opt: ndarray, K_target: ndarray) Tuple[DataFrame, DataFrame, Figure, Figure] #
Produces all result tables for Kraus rank 1 estimates and turns them into figures.
This includes parameters of the Hamiltonian generators in the Pauli basis for all gates, as well as the usual performance metrics (Fidelities and Diamond distances). If bootstrapping data is available, error bars will also be generated.
- Parameters:
dataset (Dataset) – xarray.Dataset A dataset containing counts from the experiment and configurations
qubit_layout (List[int]) – List[int] The list of qubits for the current GST experiment
df_g (DataFrame) – Pandas DataFrame The dataframe with properly formated results
X_opt (ndarray) – 3D numpy array The gate set after gauge optimization
K_target (ndarray) – 4D numpy array The Kraus operators of all target gates, used to compute distance measures.
- Returns:
- Pandas DataFrame
The dataframe with properly formated results of standard gate errors
- df_g_rotation Pandas DataFrame
A dataframe containing Hamiltonian (rotation) parameters
- fig_g: Figure
A table in Figure format of gate results (fidelities etc.)
- fig_rotation: Figure
A table in Figure format of gate Hamiltonian parameters
- Return type:
df_g_final