iqm.benchmarks.compressive_gst.gst_analysis.generate_gate_results#
- iqm.benchmarks.compressive_gst.gst_analysis.generate_gate_results(dataset: Dataset, qubit_layout: List[int], df_g: DataFrame, X_opt: ndarray, E_opt: ndarray, rho_opt: ndarray, max_evals: int = 6) Tuple[DataFrame, DataFrame, Figure, Figure] #
Produces all result tables for arbitrary Kraus rank estimates and turns them into figures.
- Parameters:
df_g (DataFrame) – Pandas DataFrame The dataframe with properly formated results
X_opt (ndarray) – 3D numpy array The gate set after gauge optimization
E_opt (ndarray) – 3D numpy array An array containg all the POVM elements as matrices after gauge optimization
rho_opt (ndarray) – 2D numpy array The density matrix after gauge optmization
max_evals (int) – int The maximum number of eigenvalues of the Choi matrices which are returned.
dataset (Dataset) –
- Returns:
- Pandas DataFrame
The dataframe with properly formated results of standard gate errors
- df_g_evals_final Pandas DataFrame
A dataframe containing eigenvalues of the Choi matrices for all gates
- fig_g: Figure
A table in Figure format of gate results (fidelities etc.)
- fig_choi: Figure
A table in Figure format of eigenvalues of the Choi matrices of all gates
- Return type:
df_g_final