iqm.benchmarks.compressive_gst.compressive_gst.CompressiveGST#

class iqm.benchmarks.compressive_gst.compressive_gst.CompressiveGST(backend: IQMBackendBase, configuration: GSTConfiguration)#

Bases: Benchmark

SPAM-robust characterization of a set of quantum gates

Attributes

name

Methods

add_configuration_to_dataset(dataset)

Creates an xarray.Dataset and adds the circuits and configuration metadata to it

analysis_function(run)

Analysis function for compressive GST

execute(backend)

The main GST execution routine

generate_meas_circuits()

Generate random circuits from the gate set

Parameters:
static analysis_function(run: BenchmarkRunResult) BenchmarkAnalysisResult#

Analysis function for compressive GST

Parameters:

run (BenchmarkRunResult) – BenchmarkRunResult A BenchmarkRunResult instance storing the dataset

Returns:

BenchmarkAnalysisResult

An BenchmarkAnalysisResult instance with the updated dataset, as well as plots and observations

Return type:

result

generate_meas_circuits() None#

Generate random circuits from the gate set

The random circuits are distributed among different depths ranging from L_MIN to L_MAX, both are configurable and stored in self.configuration.seq_len_list. No transpilation other than mapping to the desired qubits is performed, as the gates need to be executed axactly as described for GST to give meaningful results

Returns:

float

The time it took to generate and transpile the circuits

Return type:

circuit_gen_transp_time

add_configuration_to_dataset(dataset)#

Creates an xarray.Dataset and adds the circuits and configuration metadata to it

Parameters:

self – Source class

Returns:

xarray.Dataset to be used for further data storage

Return type:

dataset

execute(backend) Dataset#

The main GST execution routine

Return type:

Dataset