ObservationSetBase#

class ObservationSetBase(*, observation_set_type, observation_ids, describes_id=None, invalid=False)#

Bases: PydanticBase

Abstract base class of the observation set definition and data.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Module: iqm.station_control.interface.models.observation_set

Attributes

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

observation_set_type

Indicates the type (i.e. purpose) of the observation set.

observation_ids

Database IDs of the observations belonging to the observation set.

describes_id

Unique identifier of the observation set this observation set describes.

invalid

Flag indicating if the object is invalid.

Methods

Parameters:
  • observation_set_type (Literal['calibration-set', 'characterization-set', 'generic-set', 'quality-metric-set']) –

  • observation_ids (list[int]) –

  • describes_id (UUID | None) –

  • invalid (bool) –

observation_set_type: Literal['calibration-set', 'characterization-set', 'generic-set', 'quality-metric-set']#

Indicates the type (i.e. purpose) of the observation set.

observation_ids: list[int]#

Database IDs of the observations belonging to the observation set.

describes_id: UUID | None#

Unique identifier of the observation set this observation set describes.

invalid: bool#

Flag indicating if the object is invalid. Automated systems must not use invalid objects.

model_config: ClassVar[ConfigDict] = {'extra': 'ignore', 'ser_json_inf_nan': 'constants', 'validate_assignment': True, 'validate_default': True}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].